PDA

View Full Version : Outpatient Glycemic Control with a Bionic Pancreas in Type 1 Diabetes



CheneyHsiung
Sat 26th July '14, 11:31pm
Outpatient Glycemic Control with a Bionic Pancreas in Type 1 Diabetes

Steven J. Russell, M.D., Ph.D., Firas H. El-Khatib, Ph.D., Manasi Sinha, M.D., M.P.H., Kendra L. Magyar, M.S.N., N.P., Katherine McKeon, M.Eng., Laura G. Goergen, B.S.N., R.N., Courtney Balliro, B.S.N, R.N., Mallory A. Hillard, B.S., David M. Nathan, M.D., and Edward R. Damiano, Ph.D.
N Engl J Med 2014; 371:313-325July 24, 2014 (http://www.nejm.org/toc/nejm/371/4/)DOI: 10.1056/NEJMoa1314474


BACKGROUND

The safety and effectiveness of automated glycemic management have not been tested in multiday studies under unrestricted outpatient conditions.


METHODS

In two random-order, crossover studies with similar but distinct designs, we compared glycemic control with a wearable, bihormonal, automated, “bionic” pancreas (bionic-pancreas period) with glycemic control with an insulin pump (control period) for 5 days in 20 adults and 32 adolescents with type 1 diabetes mellitus. The automatically adaptive algorithm of the bionic pancreas received data from a continuous glucose monitor to control subcutaneous delivery of insulin and glucagon.


RESULTS

Among the adults, the mean plasma glucose level over the 5-day bionic-pancreas period was 138 mg per deciliter (7.7 mmol per liter), and the mean percentage of time with a low glucose level (<70 mg per deciliter [3.9 mmol per liter]) was 4.8%. After 1 day of automatic adaptation by the bionic pancreas, the mean (±SD) glucose level on continuous monitoring was lower than the mean level during the control period (133±13 vs. 159±30 mg per deciliter [7.4±0.7 vs. 8.8±1.7 mmol per liter], P<0.001) and the percentage of time with a low glucose reading was lower (4.1% vs. 7.3%, P=0.01). Among the adolescents, the mean plasma glucose level was also lower during the bionic-pancreas period than during the control period (138±18 vs. 157±27 mg per deciliter [7.7±1.0 vs. 8.7±1.5 mmol per liter], P=0.004), but the percentage of time with a low plasma glucose reading was similar during the two periods (6.1% and 7.6%, respectively; P=0.23). The mean frequency of interventions for hypoglycemia among the adolescents was lower during the bionic-pancreas period than during the control period (one per 1.6 days vs. one per 0.8 days, P<0.001).


CONCLUSIONS

As compared with an insulin pump, a wearable, automated, bihormonal, bionic pancreas improved mean glycemic levels, with less frequent hypoglycemic episodes, among both adults and adolescents with type 1 diabetes mellitus. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov numbers, NCT01762059 (http://clinicaltrials.gov/show/NCT01762059) and NCT01833988 (http://clinicaltrials.gov/show/NCT01833988).)